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Abstract

Due to the substantial industry heterogeneity in China, CO2 emissions and the major forces
driving these emissions may vary in different sub-sectors. However, this topic has rarely been
discussed at the industrial sub-sector level. To fill this gap, using an generalized Divisia index
model (GDIM) incorporating investment factors, and considering 38 industrial sub-sectors, this
study investigated the trajectories of China's industrial CO2 emissions and their driving forces,
both at the overall industrial sector and its sub-sector levels. The results showed, (1) during
2000–2017, 97.2% of the increases in China’s total industrial CO2 emissions was attributable to
four sub-sectors. (2) Investment scale was the largest driver of increases in CO2 emissions,
followed by output scale and energy consumption. (3) Carbon intensity of investment, energy
intensity, and investment efficiency were main drivers of reductions in CO2 emissions, but their
effects remained limited. (4) The roles of different drivers varied across sub-sectors, resulting in
great heterogeneity in emission trajectories between different sub-sectors. The findings indicate
the necessity of designing emission-reduction strategies at the sub-sector level, and more efforts
should focus on the electricity, heat, metallurgy, mining, and chemical industries.
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1. Introduction

After a short period of decline during 2014–2016, global energy-related carbon dioxide (CO2)

emissions rebounded to the record level of 33.6 Mt in 20181. Global collaborative efforts to

reverse this undesirable situation are crucial. By the end of 2020, over half of countries had

announced carbon neutrality targets. As the world’s leading energy consumer and CO2 emitter

(Shan et al., 2020), China announced two ambitious goals to be achieved by 2030: reaching a peak

CO2 emissions level and lowering its carbon intensity by 60%–65% relative to the 2005 level

(Zhang et al., 2017). Recently, the Chinese government further promised that China would aim to

achieve its carbon neutrality by 2060 (China Daily, 2020). To predict future CO2 emissions and

design energy-saving and emission-reducing policies and thus meet these goals, it is crucial to

determine the distribution of and factors driving historical CO2 emissions (Wang and Liu, 2017;

Zhang et al., 2020).

In the last four decades, China has transformed rapidly from an agricultural into an industrial

economy, a process that has historically taken hundreds of years in developed countries. As shown

in Fig.1, this can be verified by the changes in China's industrial structures, that is, the proportion

of the added value of the primary industry in GDP decreased rapidly from 27.7% in 1978 to 7.7%

in 2020. Another characteristic corresponding to the rapid industrialization is that China's GDP has

maintained a miracle of high growth rate for many years, with an average growth rate of 9.3%

during 1978–2020 (see Fig. 1). Large-scale investment is widely regarded as the major driver of

China’s rapid economic growth (Qin et al., 2006). Fig.1 shows, China's total fixed asset

1 Source: International Energy Agency (IEA), Greenhouse Gas Emissions from Energy database. Available
from https://www.iea.org/data-and-statistics/data-browser/?country=WORLD&fuel=CO2%20emissions&indicat
or=CO2BySource. Here, the world emissions are calculated from the annual data for 203 countries and 4-
2 regional aggregates, from 1971 to 2019.

https://www.iea.org/data-and-statistics/data-browser/?country=WORLD&fuel=CO2%20emissions&indicator=CO2BySource.
https://www.iea.org/data-and-statistics/data-browser/?country=WORLD&fuel=CO2%20emissions&indicator=CO2BySource.
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investment has increased rapidly since 2000, from 2.3 trillion CNY to 52.7 trillion CNY in 2020,

with an average growth rate of 15.2%. Such an extensive growth model based on

investment-driven and rapid industrialization inevitably leads to a large amount of energy

consumption and CO2 emissions. The national energy consumption in China increased by 2.4

times, from 1469.6 million tons of coal equivalent (Mtce) to 4980.0 Mtce during 2000–20202. The

shale of coal consumption in total energy consumption has always remained between 60% and

70% (see Fig. 1). Due to such heavily fossil fuels combustion, China became the world's largest

CO2 emitter in 2007 with an amount of 6473.3 Mt, accounting for 29.4% of global CO2

emissions3.

With respect to the industrial sector, as shown in Fig. 1, the energy consumption structure of

China's industrial sector is highly similar to that of the whole country. This is because the

industrial sector is responsible for 70% of China’s total energy consumption and 80% of its CO2

emissions (Liu et al., 2015). Specifically, the industrial energy consumption increased by 1.9 times,

form 1030.1 Mtce to 3023.1 Mtce during 2000–20174. Accordingly, China’s industrial CO2

emissions increased by 2.17 times, from 2452.3 Mt to 7768.2 Mt during the same period5. With

the acceleration of energy transition, as shown in Fig.1, the shares of gas and oil both show an

upward trend, but coal is absolutely the dominant energy source in China's industrial sector.

Moreover, the industrial sector has consistently accounted for 38–48% of GDP over the past four

decades. Thus, a study of energy, the environment, and climate change in China should initially

focus on the industrial sector (Zhang and Da, 2015).

2 Source: National Bureau of Statistics of China (NBSC). Available from https://data.stats.gov.cn.
3 Source: IEA, Greenhouse Gas Emissions from Energy database. Available from https://www.iea.org/data-a
nd-statistics/data-product/co2-emissions-from-fuel-combustion.
4 Source: National Bureau of Statistics of China (NBSC). Available from https://data.stats.gov.cn.
5 Source: China Emission Accounts and Datasets (CEADs). Available from https://www.ceads.net.

https://data.stats.gov.cn/
https://www.iea.org/data-and-statistics/data-product/co2-emissions-from-fuel-combustion.
https://www.iea.org/data-and-statistics/data-product/co2-emissions-from-fuel-combustion.
https://data.stats.gov.cn/
https://www.ceads.net
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***INSERT FIG.1 HERE***

The objectives of this study were to uncover the factors driving China’s industrial CO2

emissions from the perspective of industry segmentation and to provide decision-making

references for the design of feasible mitigation strategies for each industrial sub-sector.

Specifically, using an extended GDIM decomposition model and considering 38 industrial

sub-sectors, we investigated the trajectories of China's industrial CO2 emissions and their driving

forces during 2000–2017. Previous studies concluded economic scale was the largest driving force

of increases in CO2 emissions in China (e.g. Minx et al., 2011; Zhang et al., 2015; Vaninsky, 2014;

Shao et al., 2016a; Fan et al., 2015; Li et al., 2017), but they overlooked an important fact that

large-scale investment is the major driver of China’s rapid economic growth (Qin et al., 2006).

Given that the impacts of investment factors on CO2 emissions have been ignored in traditional

decomposition models (Zhao et al., 2016; Zhang et al., 2017, 2020), we considered not only the

conventional factors but also three novel investment factors in our extended GDIM model, i.e.,

investment scale, carbon intensity of investment, and investment efficiency (see Methodology and

data for their detailed definitions). Our results suggested a different conclusion, that is, both

investment scale and carbon intensity of investment played an essential role in CO2 emissions in

all sub-sectors, especially their contributions exceeded those of economic activities.

This study makes three main contributions to previous literature. Regarding the first

contribution, to the best of our knowledge, this study is the first to provide a relatively full

sub-sectoral overview of forces driving CO2 emissions in the Chinese context. Although China has

an integrated industrial system, its industries vary in their resource endowments, technological

levels, and economic contributions, leading to heterogeneity in both CO2 emissions and the forces
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driving these emissions (Khan et al., 2020). For example, variations in technology level may lead

to large differences in energy efficiency and carbon intensity of output (Luan et al., 2019).

Furthermore, the investment efficiency of a capital-intensive industry differs from that of a

labour-intensive industry (Qin and Song, 2009). It is both interesting and necessary to integrate

different sub-sectoral analysis in the same decomposition framework – a gap that we help to fill in

this article.

As our second contribution, we introduce three novel investment factors into the extended

GDIM decomposition framework. Firstly, in terms of investment scale, this study examined the

heterogeneous contribution to CO2 emissions made by investment scale in each industrial

sub-sector and thus analyzed the structural effect of the total investment. For example, CO2

emissions may increase if heavily polluting industries increase their investment scale, while CO2

emissions may decrease in the case of investment in green industries increases. Secondly, from the

perspective of carbon intensity of investment, it reflects the impact (on CO2 emissions) of changes

in the low carbon level of fixed asset investment (Zhang et al., 2020). For example, an investment

intended to renovate equipment to meet energy-saving and emission-reduction targets can

certainly mitigate CO2 emissions (Zhao et al., 2016; Zhang et al., 2017). However, an investment

intended to expand production scale and improve capital productivity may also has a rebound

effect, leading to increases in energy consumption and emissions (Shao et al., 2014; Baležentis et

al., 2021; Khosroshahi and Sayadi, 2020). Thirdly, regarding investment efficiency, it reflects the

impact of changes in capital productivity on CO2 emissions (Zhang et al., 2020). Accordingly, the

role of investment should be considered.

Regarding our third contribution, this article presents a relatively early discussion of how



7

each industrial sub-sector in China can achieve its carbon peak target, in contrast with the usual

discourses focused on the national (Ding et al., 2019) or province-level approaches (Fang et al.,

2019; Zhang et al., 2020; Li et al., 2021). If CO2 emissions in different sub-sectors are affected by

different drivers, policymakers must consider sector-based mitigation strategies, such as a

stratified pathway that distinguishes heavy industry from light industry. We sought to fill this gap

by shifting the focus from the national or regional levels to the industrial sub-sector level.

The remainder of this article is organized as follows. Section 2 presents the literature review.

Section 3 describes the extended GDIM method and data used in the study. Section 4 reveals the

decomposition results. Section 5 discusses the emissions mitigating strategies. Section 6 draws

research conclusions.

2. Literature review

The historical trajectories and driving forces of China’s CO2 emissions have been addressed

extensively at the national and regional levels (Du and Lin, 2015; Du et al., 2017; Liao et al., 2019;

Wen et al., 2019, 2020; Zhang et al., 2016, 2020). These macro-perspective analysis have enriched

our understanding of the drivers of CO2 emissions, but a sector-based perspective can offer the

flexibility to mitigate emissions, which may be more feasible and manageable than a country-wide

approach (Cai et al., 2007). Recently, increasing studies have shifted the focus into the sector level,

but most of them have focused on emissions and diving forces in aggregated sectors (Erdoğan et

al., 2020; Karakaya, et al., 2020; Zhang et al., 2017), or in specific industries such as the mining

(Lin and Ouyang, 2014; Shao et al., 2016a; Feng et al., 2018; Wang and Feng, 2018), power and

other energy sub-sectors (Zhang et al., 2013; Zhou et al., 2014; Morales-Lage, 2019),

manufacturing (Shao et al., 2016a), transportation (Gambhir et al., 2015; Bai et al., 2020), and the
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agricultural sector (Lin and Xu, et al., 2018).

However, by analyzing the complementary or alternative relationship between energy and

other inputs in Germany, Alataş (2020) found an opposite outcome was observed between some of

energy-dominant industries and other industries in terms of both input substitution and its

adjustment process. Aslan et al. (2018) found that inverted U-shaped EKC hypothesis was valid

for total CO2 emissions, industrial CO2 emissions, electrical CO2 emissions and residential CO2

emissions, but the inverted U-shaped relationship between economic growth and CO2 emission

was not supported for commercial and transport sector. Khan et al. (2020) found that the impact of

technological progress on CO2 emissions varied among different economic sectors in Pakistan.

These results clearly show us that the importance of conducting an empirical analysis at the

dis-aggregated level and the necessity of implementing industry-oriented emissions mitigation

policies. Similarly, there is a substantial industry heterogeneity in China. Strategies to mitigate

CO2 emissions should be designed at the sub-sector level based on the industry-specific needs and

peculiarities. Unfortunately, this issue has not been paid enough attention in the Chinese context.

Regarding the drivers of CO2 emissions, the factorial decomposition research has frequently

considered the traditional socioeconomic factors such as energy intensity, energy structure, energy

consumption, economic scale, economic structure, GDP per capital, and population (Mahony,

2013; Sadorsky, 2014; Cansino et al., 2015; Zhang and Da, 2015; Mi et al., 2018; Feng et al., 2018;

Ghazali et al, 2019; Chong et al., 2019). For example, Chong et al. (2019) found that population,

GDP per capital and end-use fuel-mix changes increased CO2 emissions in Malaysia during

1978–2014, while energy intensity and electricity efficiency decreased CO2 emissions. Cansino et

al (2015) decomposed CO2 emissions in Spain during 1995–2009 and demonstrated that improved
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performance in the carbon intensity and energy intensity exceeded the role of affluence and the

effect of population as traditional drivers of CO2 emissions, while the contribution of economic

structure factor remained inconclusive. Diakoulaki and Mandaraka (2007) explained changes in

industrial CO2 emissions in 14 EU countries from 1990 to 2003 and concluded that the main

influencing factors were output, energy intensity, structure, fuel mix and utility mix. Moutinho et

al. (2015) analyzed the driving forces of energy-related CO2 emissions in Europe and the results

showed that CO2 emissions were correlated with the energy consumption, which was determined

by the change of population among the various countries. O’Mahony (2013) addressed the driving

forces of CO2 emissions in 11 final energy consuming sectors in Ireland from 1990 to 2010 and

found that scale, structure and intensity were the three key factors. Mousavi et al. (2017) found

economic activity was the largest driving force of increases in CO2 emissions in Iran from 2003 to

2014. Bhattacharyya and Ussanarassamee (2004), Alves and Moutinho (2013) found that

industrial structure, energy intensity and energy structure drove the changes in CO2 emissions in

Thailand and Portugal, respectively. In China, many studies concluded that economic growth

appeared as the main driver of increases in CO2 emissions (Zhang et al., 2015; Shao et al., 2016a;

Fan et al., 2015; Vaninsky, 2014; Li et al., 2017), and the decrease of energy intensity played

significant role in curbing CO2 emissions (Zhang et al., 2016), but the reduction effect of

inhibiting factors of CO2 emissions was less than the driving effect of economic growth in most

years (Zhang and Da, 2015).

In terms of the methods used in previous studies, as detailed by Feng et al. (2018), three

primary categories of methods were broadly applied by researchers: the STIRPAT, IPAT and

regression; the environmental Kuznets curve method; and decomposition analysis. Although each
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method has its advantages, decomposition analysis can not only identify the main driving forces of

the variations in an aggregation but also show the clearly quantitative results of to what extent the

driving forces affect the variations (Su and Ang, 2012).

Specifically, the decomposition analysis mainly includes three types of approaches (see Wang

and Feng (2018) for details about the advantages and disadvantages of these three approaches).

The first approach is structural decomposition analysis (SDA), which is based on input–output

analysis (e.g., Rose and Casler, 1996; Guan et al., 2008; Su and Ang, 2012; Mi et al., 2016;

Cansino et al., 2016). However, its use in the current study is limited by the lack of availability of

an annual sub-sectoral input–output table. The second approach is production-theoretical

decomposition analysis (PDA), which is based on production theory and the data envelopment

analysis model (e.g., Kim and Kim, 2012; Li et al., 2017; Wang et al., 2018). The third approach is

index decomposition analysis (IDA), which is based on index number theory (e.g., Zha et al., 2010;

Wang and Feng, 2017, 2018). It is particularly well suited to our study due to its low data

requirement and easy implementation (Ang and Zhang, 2000; Ang and Xu, 2013).

Among the various IDA models, the logarithmic mean Divisia index (LMDI) model is one of

the popular method (e.g., Ang, 2005; Xu et al., 2012; Fernández-González et al., 2014; Moutinho

et al., 2015; Lin and Long, 2016; Wang et al., 2017; Feng et al., 2018; Wang and Feng, 2018). In

the LMDI model, the Divisia index has normally been used to decompose the target variable into

several multiplicative factors. However, the effects of multiple quantitative and relative indicators

on the resulting indicators cannot be simultaneously incorporated (Zhang et al., 2020). Besides,

the decomposition results of LMDI strongly rely on the factors interdependence (Shao et al., 2016).

Thus, the results of such factorial decomposition do not fully align with economic common sense
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because the structural factors are interconnected (Vaninsky, 2014). To this end, Vaninsky (2014)

extended the Kaya identity and proposed a more general empirical decomposition framework,

namely the GDIM method. Compared with the LMDI method, this approach includes these

interconnected factors, and allows for the inclusion of any quantitative and relative indicators

(Vaninsky, 2013, 2014).

In summary, the existing studies have shown that the key factors driving CO2 emissions in

countries at different historical stages or development levels are not completely consistent. Even

in the same country, the roles of various factors are also volatile in different sectors. This indicates

the necessity of our analysis from the perspective of the sub-sector level. Moreover, relatively few

studies, particularly those using the GDIM method have considered investment factors. In this

regard, Shao et al. (2016b) took the lead in introducing investment factors into the LMDI model.

Zhao et al. (2016), and Zhang et al. (2017, 2020) found that investment scale was the dominant

driver in promoting China’s industrial CO2 emissions. However, their investigations are limited to

analyzing the role of investment at the overall industrial sector level, lacking of its sub-sectoral

decomposition.

3. Methodology and data

3.1. GDIM decomposition approach

This study employed the GDIM method to decompose the drivers of changes in CO2

emissions. As investment is the primary driver of rapid economic growth in China, this study

expanded the basic GDIM model by adding three investment indicators. Under such

circumstances, CO2 emissions can be presented in one of four ways:
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(1)

where the subscript i indicates the thi sub-sector; C is CO2 emissions; E is energy

consumption; G is economic output (industrial output value); and I is investment scale (fixed

asset investment).

Let ECECI  indicate the carbon intensity of energy; YCGCI  the carbon intensity of

output; ICICI  the carbon intensity of investment; YEEI  the energy intensity; and

IYIE  the investment efficiency. Using these newly defined variables, we can obtain the

following equations:
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According to the principle of the GDIM, we can then separate the above equations into a

factor model and equations representing the interconnections between the factors:

iii GCIYC  (4)

01  iiii ECIEGCIY (5)

02  iiii ICIIGCIY (6)

03  iii IEIIY (7)

04  iii EIYE (8)

Let  XCi indicates the function of the contribution of factor iX to CO2 emissions. The

Jacobian matrix x is the first-order derivative of  ( ],...,[ 61   ). A gradient of the function

 XCi and the Jacobian matrix x are listed as follows:

T
iii YGCIC 0,0,0,0,0,0,,▽  (9)
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According to Vaninsky (1984), the factorial decomposition of changes in CO2 emissions in

the presence of the interconnections between factors can be expressed as follows:

   dXCXC
L

XX
T
ii   IΦ (11)

where L is time span; I is identity matrix; and the superscript + denotes the generalized

inverse matrix. If the columns of the matrix x are linearly independent, then

  T
XX

T
XX ΦΦΦΦ

1  (12)

See Albert (1972) for details. Hence, the changes in CO2 emissions in each sub-sector ( iC )

can be decomposed into eight drivers in the following additive expression:
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1j
jii XCC (13)

The eight drivers are the energy consumption effect ( EC ), output scale effect ( YC ),

investment scale effect ( IC ), carbon intensity of energy effect ( ECIC ), carbon intensity of

output effect ( GCIC ), carbon intensity of investment effect ( ICIC ), energy intensity effect

( EIC ), and investment efficiency effect ( IEC ). As detailed in Zhang et al. (2020), EC , YC ,

and IC reflect the impacts of changes in the absolute scale of energy consumption, industrial

output, and fixed investment on emissions, respectively. Of the remaining relative indicators,

GCIC reflects the impact of changes in the low carbon level of economic growth; ECIC

reflects the impact of structural changes in energy consumption; ICIC reflects the impact of

changes in the low carbon level of fixed asset investment; IEC reflects the impact of changes in

capital productivity; and EIC reflects the impact of changes in economic dependence on energy

use.
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3.2. Definition of 38 sub-sectors

This study focused on the industrial sub-sectors. According to the latest revised National

Standard of People's Republic of China (GB/T 4764–2017), the industrial sector includes 41

sub-sectors. As the classification of China's industrial sub-sectors has undergone four major

adjustments during the entire study period, we strictly followed the suggestions from Chen (2009)

and Shan et al. (2018) to maintain a consistent sample. For example, the “Logging and Transport

of Wood and Bamboo” sub-sector has been integrated into the “Farming, Forestry, Animal

Husbandry, Fishery and Water Conservancy” major-sector since 2003, we have dropped this

sub-sector from our analysis. The “Rubber Products” sub-sector has been merged with the “Plastic

Products” sub-sector since 2012, we have merged these two sub-sectors into one sub-sector,

named the “Rubber and Plastic Products” sub-sector. The “Automobile Manufacturing” sub-sector

has been separated from the “Transportation Equipment Manufacturing” sub-sector since 2012,

but we still integrated the “Automobile Manufacturing” sub-sector into the “Transportation

Equipment Manufacturing” sub-sector after 2012. Ultimately, our decomposition objects included

38 industrial sub-sectors. For simplicity, we here abbreviate the name of each sub-sector. The

details are provided in Table A1 in the Appendix A.

3.3. Data

Based on the data availability, this study covered the 2000–2017 period. Firstly, the statistical

standards and calibers of the industrial sub-sectors in the statistical yearbooks were adjusted in

1993 and 1998, respectively, making it difficult to match the data after the adjustment with the

pre-adjusted data (Chen, 2009; Zhao et al., 2016). Chen (2009) provided a method to cope with



15

the changes in statistical calibers after 1980, however, the data quality obtained by this operation

has great uncertainty. Secondly, the CO2 emissions dataset we used only provided the emissions

data with the newly statistical caliber after 2000 (Shan et al., 2018, 2020). Therefore, in

accordance with the general practice of many previous empirical studies focusing on China’s

industrial sector (e.g., Liu et al., 2007; Fujii et al., 2013; Yang et al., 2013; Luan et al., 2019), we

have to limit the analysis to a certain range after 1998.

We constructed a panel data covering 38 industrial sub-sectors. The sub-sectoral output value,

energy consumption, and fixed asset investment data were obtained from the China Statistical

Yearbook (NBSC, 2001–2018), China Industry Economy Statistical Yearbook (NBSC, 2001–2012),

China Energy Statistical Yearbook (NBSC, 2001–2018), and China Fixed Asset Investment

Statistical Yearbook (NBSC, 2004–2018). The output value and investment data were deflated to

1990 prices. The energy consumption data included 17 types of fossil fuels, all of which were

measured in standard coal equivalents.

For each sub-sector, the time series of CO2 emissions were derived from CEADs (Available

from https://www.ceads.net) issued by Shan et al. (2018; 2020). Because this dataset offers five

advantages. Firstly, the dataset estimates CO2 emissions in terms of the IPCC administrative

territory-based accounting scope, which includes emissions from 17 fossil fuels combustion

(energy-related emissions) and emissions from the cement production (process-related emissions).

Secondly, to avoid duplication, the dataset does not include fossil fuels used as chemical raw

materials, energy losses during transportation, or non-burning fossil fuel input during energy

conversion processes. Thirdly, this dataset provides emissions in each industrial sub-sector using

two different calculation methods, namely sectoral approach and reference approach. Our study

https://www.ceads.net
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used emissions data calculated by sectoral approach (see Shan et al. (2018) for details), because

sectoral approach estimates are more accurate than reference approach estimates (Shan et al.,

2018). Fourthly, the dataset uses updated emission factors, estimated based on a wide investigation

of 4243 coal mine samples, and reports different oxygenation efficiencies for the fossil fuels used

in different sectors, to represent differences in combustion technology levels. Most previous

studies used the IPCC default value directly. However, the IPCC default emission factors are

approximately 40% higher than the survey values in China (Shan et al., 2018). Fifthly, the dataset

uses Monte Carlo simulations to propagate the uncertainties induced by both fossil fuel

consumption and emission factors.

The mean value of each indicator is presented in Table 1. During 2000–2017, the average

yearly CO2 emissions of each sub-sector was about 153 Mt. In terms of the sub-sectors related to

energy production, their carbon intensity of output, carbon intensity of investment, carbon

intensity of energy, and energy intensity were much higher than those of other sub-sectors, but

their average output scale was lower than that of other sub-sectors. This indicates the high

emissions of energy-intensive sub-sectors did not result in correspondingly high economic output.

In contrast, those sub-sectors with low-emissions and low-energy consumption (mainly

concentrated in the high-tech and light manufacturing categories) exerted both high economic

output and high investment efficiency.

***INSERT Table 1 HERE***

4. Results

This section analyzed the trajectories of China's CO2 emissions and their driving forces, both
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at the overall industrial sector and its sub-sector levels. Firstly, we took the entire industrial sector

as the decomposition object, thus the overall changes in industrial CO2 emissions and the total

contributions of the eight factors were investigated. Secondly, we shifted to the industrial

sub-sectors, so CO2 emissions and their driving forces of 38 sub-sectors were decomposed.

4.1. Overall decomposition results

Fig. 2 presents the yearly changes in total industrial CO2 emissions and the overall

contributions of the eight drivers. The detailed results are presented in Table A2. Overall, the total

industrial CO2 emissions in China increased by 2.17 times (5316.0 Mt) from 2000 to 2017, rising

from 2452.3 Mt to 7768.2 Mt, respectively. However, the rate of growth decreased over time. As

shown in Fig. 2 and Table A2, the changes in overall CO2 emissions experienced four stages:

high-speed growth stage (2000–2006), decreasing-speed growth stage (2007–2009), steady growth

stage (2010–2012) and transition stage (2013–2017). This trend is in line with changes in China’s

national CO2 emissions from 2000 to 2015 (Li et al., 2017). A short-term period of negative

growth in CO2 emissions occurred during 2014–2016, followed by a rapid increase in 2017,

consistent with the trend of changes in global CO2 emissions.

In terms of the sub-sectors’ contributions to total industrial CO2 emissions, as shown in Fig. 3,

the top four sub-sectors were Production and Supply of Electric Power, Steam and Hot Water

(PSESW), Smelting and Pressing of Ferrous Metals (SPFM), Nonmetal Mineral Products (NMP),

and Raw Chemical Materials and Chemical Products (RCMC). The cumulative changes in CO2

emissions of these four sub-sectors accounted for 97.2% (5164.8 Mt) of changes in total industrial

CO2 emissions during 2000–2017. Moreover, PSESW represented the most of changes in CO2

emissions among 38 sub-sectors, followed by SPFM , NMP, and RCMC.
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With regard to the quantitative indicators, as shown in Fig. 3, the output scale and energy

consumption represented increases in CO2 emissions of 1427.3 Mt and 1414.8 Mt, respectively,

accounting for 26.9% and 26.6% of changes in total industrial CO2 emissions, respectively.

However, when we considered investment as the prerequisite of economic growth and

incorporated it into the GDIM model, we found that the contribution of investment scale exceeded

that of output scale and all other factors. This result is primarily due to the massive fixed asset

investments attracted by the industrial sector, which are mainly used for capital construction rather

than low-carbon technological innovation or equipment upgrading. The average nominal growth

rate of fixed asset investments in China reached 21.0% during 2000–2015, exceeding the GDP

growth rate, even though investment growth began to decline from the launch of the 13th

Five-Year Plan (FYP). Ihe industrial sector, the scale of fixed asset investment increased by 10.4

times from 2042.7 billion CNY in 2003 to 23272.6 billion CNY in 2017, representing

approximately 40% of the total fixed asset investments. During 2000–2017, the cumulative

contribution of investment scale represented increases in CO2 emissions of 5463.4 Mt (see in Fig.

3), accounting for 102.8% of changes in total industrial CO2 emissions. However, as shown in Fig.

1, this trend yielded an inverted U-shaped curve, as the yearly contribution of investment scale to

CO2 emissions increased from 77.2 Mt at the beginning of the 10th FYP to 540.6 Mt at the end of

the 11th FYP, but declined gradually after entering the 12th FYP to 16.43 Mt in 2017.

Among the other relative indicators, carbon intensity of investment, investment efficiency,

and energy intensity all mitigated CO2 emissions to varying degrees. Carbon intensity of

investment was the largest driver of reductions in CO2 emissions, yielding a cumulative reduction

in CO2 emissions of 3417.6 Mt. This mitigating effect increased across the 2000–2017 period due



19

to increasing investments targeting green development and low-carbon technology innovation. For

example, investments targeting environmental governance and industrial pollution control

increased by 7.2 times and 3.0 times in China, respectively, during this period.

Investment efficiency counteracted increases in CO2 emissions by contributing a decrease of

301.0 Mt. In China, over-investment over the long term in some industrial sub-sectors has led to a

large amount of overcapacity, which in turn have resulted in diminishing marginal return on

capital. During 2000–2017, investment efficiency (calculated at 1990 prices) decreased by 87.9%.

Since the 12th FYP, China has implemented supply-side reforms, such as phasing out backward

and redundant industrial production capacity and adjusting the industrial structure. Besides, the

government has also paid more attention to green investment to accelerate energy conservation.

Energy intensity also counteracted increases in CO2 emissions. This observation supports the

commitment made by the Chinese government at the Copenhagen Climate Conference in 2009;

specifically, China pledged to reduce the CO2 emissions per unit of GDP by 40–45% in 2020

relative to 2005. However, its mitigating effect is limited, as this factor was only responsible for a

reduction in CO2 emissions of 58.2 Mt during 2000–2017.

Carbon intensity of output did not yield the expected mitigating effect on CO2 emissions

except during specific periods, such as the global financial crisis from 2007 to 2010. This

unexpected result is not only related to a long period of extensive economic growth in China, but

also closely related to institutional factors. In China, for example, local government officials are

generally appointed by the central government rather than by referendum due to the political

centralization, leading to a widespread "political tournament" between local governments (Zhang

and Zou, 1998; Jin et al., 2006). Meanwhile, since the fiscal decentralization reforms in 1990s,
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local governments have been required to choose between emission reduction and rapid economic

growth. Generally, they have tended to sacrifice the environment in favour of the economy. This is

exemplified by the approximate 17.0% increase in the carbon intensity of industrial output (at an

average growth rate of 1.2%) during 2000–2017.

Carbon intensity of energy played a dual role in changes of CO2 emissions throughout the

study period, its cumulative contribution was a 373.6 Mt increase in CO2 emissions. This factor

played a mitigating role mainly in the early to middle stages of the 10th FYP and the later stage of

the 12th FYP. This indicates the structural contradictions in China’s energy transition. On the one

hand, the proportion of non-fossil fuels contributing to the total energy consumption is increasing

with the rapid development of clean and renewable energy. On the other hand, the production

activities of some industrial sub-sectors still relies heavily on fossil fuels especially as coal, which

remains the largest source of energy consumed in China (57.7% in 2019).

Overall, during 2000–2017, investment scale effect, output scale effect, and energy

consumption effect were the primary drivers of increases in CO2 emissions. Carbon intensity of

investment effect, investment efficiency effect, and energy intensity effect were the main

contributors to reductions in CO2 emissions.

***INSERT FIG. 2 HERE***

***INSERT FIG. 3 HERE***

4.2. Sub-sectoral decomposition results

Since there are too many sub-sectors involved, we cannot compare the decomposition results
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of all sub-sectors one-by-one at the same time. Therefore, we followed the classification of Shan

et al. (2018) to cluster these 38 sub-sectors into four categories. That is, energy production

category (covered 9 sub-sectors), heavy manufacturing category (covered 11 sub-sectors), light

manufacturing category (covered 13 sub-sectors), and high-tech industry category (covered 5

sub-sectors). Then, the decomposition results of each sub-sector were presented by category. This

categorization makes each category includes limited sub-sectors, which enables us to compare the

heterogeneity in contributions of various drivers across different sub-sectors. The contributions of

eight indicators to changes in CO2 emissions of 38 sub-sectors are presented in Fig. 4 to Fig. 7.

4.2.1. Energy production category

This category includes 9 sub-sectors related to energy production. During 2000-2017, CO2

emissions of this category increased by 3035.5 Mt. Since the beginning of the current century,

China has moved towards comprehensive urbanization and industrialization (Lin and Liu, 2010),

leading to increasing demands for steel, cement, and electricity. As a result, most of these nine

energy production related sub-sectors, such as PSESW, Petroleum Processing and Coking (PPC),

Coal Mining and Dressing (CMD), Ferrous Metals Mining and Dressing (FMMD), Nonferrous

Metals Mining and Dressing (NMMD), Non-metal Minerals Mining and Dressing (NMD), and

Other Minerals Mining and Dressing (OMMD), experienced increases in CO2 emissions during

2000–2017. However, some energy production sub-sectors, such as Production and Supply of Gas

(PSG), Petroleum and Natural Gas Extraction (PNGE), yielded reductions in CO2 emissions

during 2000–2017. Especially after 2010, similar reductions were also observed in other

sub-sectors, such as FMMD, NMMD, and NMD, although the cumulative changes in CO2

emissions of all these three sub-sectors increased. This may be due to long-term over-investment
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in the mining field, which has led to a large excess capacity. Accordingly, the Chinese government

has implemented supply-side reforms to reduce overcapacity in this field since the 12th FYP.

As shown in Fig. 4, the increases in CO2 emissions of this category was mainly contributed

by PSESW (2926.0 Mt), PPC (82.7 Mt), and CMD (24.9 Mt), so the driving forces of these three

sub-sectors should be focused more attention. Specifically, in the PSESW sub-sector, energy

consumption (4028.2 Mt) was the largest driver of increases in CO2 emissions, followed by

investment scale (1652.2 Mt), carbon intensity of energy (1019.8 Mt), carbon intensity of output

(642.5 Mt), and output scale (547.7 Mt). Energy intensity (-4236.3 Mt) was the largest contributor

to reductions in CO2 emissions, followed by carbon intensity of investment (-511.3 Mt) and

investment efficiency (-216.9 Mt). In the PPC sub-sector, investment scale (67.6 Mt), energy

consumption (21.3 Mt), carbon intensity of output (19.2 Mt), output scale (15.0 Mt), and carbon

intensity of energy (12.1 Mt) were dominant drivers of increases in CO2 emissions. Carbon

intensity of investment (-33.4 Mt), energy intensity (-11.2 Mt), and investment efficiency (-7.9 Mt)

were major contributors to reductions in CO2 emissions. In the CMD sub-sector, investment scale

(45.9 Mt), output scale (22.2 Mt), energy consumption (9.4 Mt), and carbon intensity of energy

(4.6 Mt) were dominant drivers of increases in CO2 emissions. The remaining four factors all

contributed to reductions in CO2 emissions, but these contributions were mainly derived from the

impacts of carbon intensity of investment (-33.13 Mt) and energy intensity (-12.9 Mt).

Due to the mitigating effects of carbon intensity of investment (-5.99 Mt) and carbon

intensity of output (-4.79 Mt), PSG (-5.6 Mt) ranked third among 38 sub-sectors in terms of

reductions in CO2 emissions. In this sub-sector, only two factors, investment scale (4.64 Mt) and

output scale (3.31 Mt), contributed to increases in CO2 emissions. In the PNGE (-1.1 Mt)
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sub-sectors, in addition to the conventional reduction factors, such as carbon intensity of

investment (-10.82 Mt), energy intensity (-5.16 Mt), investment efficiency (-3.53 Mt), and carbon

intensity of energy (-2.26 Mt), output scale (-9.37 Mt) became the second largest contributor to

reductions in CO2 emission. However, carbon intensity of output (19.92 Mt) was the largest driver

of increases in CO2 emissions, exceeding the contributions of investment scale (12.11 Mt) and

energy consumption (2.02 Mt).

In summary, energy consumption was the largest driver of increases in CO2 emission in

PSESW and NMMD, while investment scale was the largest driver in other sub-sectors related to

energy production. Energy intensity, carbon intensity of energy, and carbon intensity of output

were the major contributors to reductions in CO2 emissions in PSESW, NMMD and OMMD,

respectively. Besides, carbon intensity of energy led to reductions in CO2 emissions in sub-sectors

such as PNGE, PSG, and OMMD. Carbon intensity of output contributed to increases in CO2

emissions in sub-sectors such as PNGE, PPC, and PSESW.

***INSERT FIG. 4 HERE***

4.2.2. Heavy manufacturing category

Heavy manufacturing is another important source of CO2 emissions in China, which includes

11 sub-sectors in this study. Due to low labour costs, China has gradually become the ‘world’s

manufacturing factory’ since joining the World Trade Organization in 2001, leading to huge

demands for fossil fuels and petrochemical materials. As a consequence, CO2 emissions of this

category increased by 2267.6 Mt during 2000-2017, which was mainly contributed by five

sub-sectors, namely SPFM, NMP, RCMC, Smelting and Pressing of Nonferrous Metals (SPNM),
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and Ordinary Machinery (OM). Especially the top three sub-sectors mentioned above accounted

for 24.2% (1286.4 Mt), 15.0% (797.2 Mt), and 2.9% (155.2Mt) of changes in total industrial CO2

emissions, respectively.

Meanwhile, increased environmental supervision by the Chinese government has led many

equipment manufacturing and chemical industries to increase their investments in

emission-reduction technologies and equipment. Therefore, the remaining six sub-sectors, such as

Equipment for Special Purposes (ESP), Transportation Equipment (TE), Metal Products (MP),

Chemical Fiber (CF), Rubber and Plastic Products (RPP), and Production and Supply of Tap

Water (PSW), experienced reductions in CO2 emissions in most years during 2000–2017, although

the intensity of these reductions was limited.

As shown in Fig. 5, in the SPFM sub-sector, only investment efficiency (-54.1 Mt) and

energy intensity (-51.9 Mt) showed mitigating but weak effects on CO2 emissions. The other six

factors all contributed to increases in CO2 emissions, especially energy consumption (441.2 Mt),

investment scale (407.5 Mt), and carbon intensity of output (333.7 Mt) were the top three drivers.

In the RCMC sub-sector, only carbon intensity of investment (-110.0 Mt), energy intensity (-10.8

Mt), and investment efficiency (-10.0 Mt) presented mitigation effects on CO2 emissions. The

remaining five factors all exerted promoting effects on CO2 emissions, especially investment scale

(173.92 Mt), energy consumption (55.52 Mt), and output scale (54.48 Mt) were the major

contributors. In the NMP sub-sector, in addition to investment scale (1104.08 Mt), output scale

(330.42 Mt), and energy consumption (138.22 Mt), carbon intensity of energy (178.02 Mt) also

exhibited a promoting effect on CO2 emissions.

In summary, in this category, investment scale, output scale, and energy consumption all
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exerted promoting effects on CO2 emissions. Carbon intensity of investment, energy intensity,

investment efficiency, carbon intensity of output (except RCMC and SPFM), and carbon intensity

of energy (except RCMC and SPFM) all exerted mitigating effects on CO2 emissions. Investment

scale (except SPFM and PSW) and carbon intensity of investment (except SPFM, ESP, and PSW)

were the largest contributors to increases and decreases in CO2 emissions of all sub-sectors,

respectively.

***INSERT FIG. 5 HERE***

4.2.3. Light manufacturing category

In the early period of 1950s, China’s light manufacturing industry was very backward, based

primarily on family-owned workshops. In order to changes such a backward situation, China did

not hesitate to sacrifice the environment to quickly establish a light industry system. However, by

the 10th FYP, the environmental pollution and poor efficiency resulting from this model of

extensive development had become increasingly conspicuous. Subsequently, the Chinese

government pursued technological innovation, vigorously implemented a serious of energy-saving

and emission-reduction policies, and gradually formed an environmentally friendly light

manufacturing industry.

The light manufacturing category contains 13 sub-sectors, but the cumulative changes in CO2

emissions only increased by 18.8 Mt during 2000–2017. The main reason for this result is that, on

the one hand, unlike the sub-sectors related to energy production and heavy manufacturing, the

sub-sectors in light manufacturing category generally have relatively limited demands for

traditional fossil energy sources; on the other hand, due to a serious of environmental protection
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policies has been promulgated by the Chinese government in this field, forcing most of the

sub-sectors to accelerate their industrial transformation and upgrading.

As shown in Fig. 6, the sub-sectors in this category all exhibited a trend of increasing first

and subsequent decreasing in CO2 emissions (i.e., an inverted U-shaped curve), except for the

Tobacco Processing (TP) sub-sector. However, only the following five sub-sectors, such as TP,

Textile Industry (TI), Garments and Other Fiber Products (GOFP), Timber Processing, Bamboo,

Cane, Palm Fiber and Straw Products (TPBC), and Furniture Manufacturing (FM), exhibited

varying degrees of decreases in CO2 emissions. In other words, although the overall increase in

CO2 emissions of this category was not significant, there were still more than 60% of sub-sectors

showing increases in CO2 emissions.

The top three sub-sectors that contributed the most to emissions in this category were all

related to food production, namely Agri-Food Processing (AFP), Food Production (FP), and

Beverage Production (BP). CO2 emissions in these three sub-sectors increased by 14.21Mt, 7.47

Mt, and 4.32 Mt, respectively. Although TI (-8.93 Mt) represented the largest reductions in CO2

emissions among 38 sub-sectors, TP (-3.09 Mt) exhibited a consistent decrease in CO2 emissions

throughout the 2000–2017 period. Specifically, in the TP sub-sector, excluding output scale and

investment scale, which drove increases in CO2 emissions in this sub-sector, the other six

indicators all showed obvious mitigating effects. In particular, the output scale and investment

scale had also exerted mitigating effects from 2014 to 2017, and this effect is mainly related to

China’s strict enforcement of nationwide tobacco control campaigns in recent years.

In summary, investment scale, output scale, and energy consumption (except TP) were the

main contributors to increases in CO2 emissions in all sub-sectors of this category, while the
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remaining five relative indicators all had mitigating effects. Moreover, investment scale and

carbon intensity of investment were the largest contributors to increases and reductions in CO2

emissions in all sub-sectors, respectively. Output scale was the second contributor to increases in

CO2 emissions in all sub-sectors except TI, Cultural, Educational and Sports Articles (CESA), and

Printing and Record Medium Reproduction (PRMR). Carbon intensity of output was the second

contributor to reductions in CO2 emissions in all sub-sectors except CESA.

***INSERT FIG. 6 HERE***

4.2.4. High-tech industry category

The high-tech industry category includes 5 sub-sectors. The total changes in CO2 emissions

of this category decreased by 8.9 Mt during 2000–2017. Obviously, compared to the above three

categories, this category made the smallest contributions to changes in total industrial CO2

emissions. Among these five sub-sectors, only the Scrap and Waste (SW) sub-sector exhibited a

slight increase in CO2 emissions (1.6 Mt), whereas the other sub-sectors, such as Electric

Equipment and Machinery (EEM), Electronic and Telecommunications Equipment (ETE),

Instruments, Meters, Cultural and Office Machinery (IMCM), and Other Manufacturing (OMs),

all experienced reductions in CO2 emissions during 2000–2017.

Regarding the driving factors, Fig. 7 clearly shows that, as in the light manufacturing

category, investment scale, output scale, and energy consumption were the major contributors to

increases in CO2 emissions in all sub-sectors of this category, and the other relative indicators all

had mitigation effects. Besides, the contributions of both investment scale and energy

consumption to increases in CO2 emissions exceeded that of output scale. Moreover, carbon
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intensity of investment had the strongest mitigating effect in all sub-sectors of this category. In

particular, in the EEM sub-sector, the carbon intensity of investment led to CO2 emissions

decreased by 13.5 Mt, which is approximately 6.8 times greater than changes in CO2 emissions of

this sub-sector (-2.0 Mt). Carbon intensity of output was the second contributor to reduced

emissions in the EEM and IMCM sub-sectors, whereas energy intensity and carbon intensity of

energy were the second contributors to reduced emissions in the ETE and OMs sub-sectors,

respectively.

***INSERT FIG.7 HERE***

5. Discussion

In this section, firstly, we summarized the contributions of various factors and compared our

findings with the results of previous studies. Secondly, we presented a brief discussion on the

future trends of the contributions of key driving forces, based on our historical decomposition

results and the relevant industrial development plans and policies issued by the Chinese

government. Finally, we discussed the mitigating pathways to achieve China’s industrial carbon

peak target by sub-sectoral efforts.

5.1. Summary of contributions of various factors

Our sub-sectoral decomposition results showed that the roles of eight driving factors on CO2

emissions varied across sub-sectors. Here, we presented a detailed summary of the impact of each

factor. The conclusions as shown in Fig. 8 to Fig. 15, and the details are presented in Table A3.

5.1.1. Investment scale effect
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Investment scale played a negative role in mitigating CO2 emissions in all sub-sectors. More

importantly, in all sub-sectors except for PSESW and NMMD, the contribution of investment

scale exceeded that of all other driving factors in promoting CO2 emissions (see Table A3). This

indicates that investment scale was the largest driver of increases in CO2 emissions in China.

Among 38 sub-sectors, as shown in Fig. 8, the investment scales of PSESW, NMP, SPFM, and

RCMC represented the vast majority of contributions to increases in CO2 emissions. This implies

that reducing investments in these four sub-sectors is an important way to achieve the carbon peak

target in China's industrial sector. This finding differs from many earlier studies, which identified

economic scale as the most important contributor to increases in CO2 emissions in China (e.g.

Minx et al., 2011; Zhang et al., 2015; Vaninsky, 2014; Shao et al., 2016a; Fan et al., 2015; Li et al.,

2017). However, our result is in line with those of recently studies considering investment factors

(e.g., Zhao et al., 2016; Zhang et al., 2020). For example, Zhang (2020) proved that the impact of

investment scale exceeded that of economic scale in promoting China’s CO2 emissions both at the

national and provincial levels. Our study supplements the evidence of the important impact of

investment scale at the sub-sector level.

***INSERT FIG.8 HERE***

5.1.2. Output scale effect

Output scale had an obvious promoting effect on CO2 emissions in all sub-sectors except

PNGE, but its impact decreased over time. As mentioned before, such a finding does not support

the mainstream views of most previous studies that economic activity was the largest driving force

of increases in CO2 emissions. In terms of the contribution of output scale in different sub-sectors,
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Fig. 9 shows PSESW was the largest contributor in this regard, followed by NMP, SPFM, RCMC,

SPNM, and CMD. This means that intensifying efforts need to promote supply-side reforms to

eliminate backward production capacity in above sub-sectors related to energy production and

heavy manufacturing, which is a key measure to achieve China’s industrial carbon peak target.

***INSERT FIG.9 HERE***

5.1.3. Energy consumption effect

Energy consumption also played a negative role in mitigating CO2 emissions in all

sub-sectors except OMMD, TP, and PSG. As shown in Fig. 10, this is mainly due to the huge scale

of energy demand in the sub-sectors related to heavy manufacturing and energy production, such

as SPFM (6719.4 Mtce), RCMC (3672.2 Mtce), NMP (3504.8 Mtce), SPNM (988.3 Mt), and

PSESW (925.2 Mtce). The accumulative energy consumption of these sub-sectors reached

15809.9 Mtce, accounting for 69.7% of the total industrial energy consumption during 2000-2017.

Especially the production activities of SPFM, RCMC, and NMP were strongly dependent on

traditional fossil energy sources. Therefore, in China, speeding up the energy transformation of

these sub-sectors and increasing the proportion of new energy, clean energy, and renewable energy

in the final energy consumption are necessary measures in the future.

***INSERT FIG.10 HERE***

5.1.4. Carbon intensity of investment effect

Carbon intensity of investment played a positive role in mitigating CO2 emissions in all

sub-sectors except CESA and SPFM. More importantly, in most sub-sectors (except NMMD,
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OMMD, ESP, CESA, and SPFM), carbon intensity of investment was the largest contributor to

reductions in CO2 emissions among all factors. This finding is consistent with Zhang et al (2020)

who also fond that carbon intensity of investment was the first driver on reducing national CO2

emissions in China during 1995-2016. In this regard, as shown in Fig. 11, carbon intensity of

investment of NMP had the largest impact, followed by PSESW and RCMC. This implies that

continuing to increasing green investments of NMP, PSESW, and RCMC is an important pathway

to help China’s industrial sector reach its carbon peak target. However, carbon intensity of

investment of SPFM contributed to increases in emissions by 56.52 Mt during the study period.

Therefore, for SPFM, in addition to the strategy mentioned above that reducing its investment

scale, it is more important to optimize its investment structure, such as increasing the proportion

of investments in green technological innovation.

***INSERT FIG.11 HERE***

5.1.5. Investment efficiency effect

Investment efficiency was the second important factor in mitigating CO2 emissions, however,

as shown in Fig. 12, its mitigation effect varied greatly across sub-sectors. In this regard, the

investment efficiency of PSESW, NMP and SPFM played a leading role. Generally speaking,

investment activities can be categorized into two main types, one is to promote productivity and

production scale (i.e., output and substitution effect), and the other is to promote energy-saving

and emission-reducing (i.e., energy-saving and emission-reducing effects). So the impact of

investment efficiency on CO2 emissions depends on the relative magnitude of “output and

substitution effect” and “energy saving and emission reduction effect” (Zhang et al., 2017). This
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means the main purpose of increasing green investment activities was to promote energy

conservation and emission reduction, rather than expanding production scale, or that “energy-

saving and emission-reducing effects” was more effective than “output and substitution effects”,

so that the decline of investment efficiency helped reduce CO2 emissions. Available result from

Zhang et al (2017) supported our speculation.

***INSERT FIG.12 HERE***

5.1.6. Energy intensity effect

Energy intensity was another contributor responsible for mitigating CO2 emissions. As shown

in Fig. 13, although energy intensity exerted a mitigating effect in all sub-sectors, its mitigation

effect was rather limited except for PSESW. This means, in most sub-sectors, the emission

reduction effect of energy intensity focused by the Chinese government was less than the expected.

There are many reasons for this result. In addition to the aforementioned sub-sectors related to

energy production and heavy manufacturing are still strongly dependent on fossil energy sources,

the rebound effect of technological progress cannot be ignored (Shao et al., 2016b). This once

again shows that accelerating the energy transition, and increasing the proportion of clean and

renewable energy consumption should be regarded as the key emission-reduction policies for all

sub-sectors. Nevertheless, the controversy still existed in the existing research on the direction (i.e.,

positive or negative) and degree (primary or secondary) of the impact of energy intensity on CO2

emissions. Such as, earlier studies without considering investment factors generally concluded that

energy intensity was the largest driving factor for reducing CO2 emissions. Even though Zhao et al.

(2016) and Zhang et al. (2017) incorporated investment factors into the LMDI model, the results
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still showed energy intensity was the leading contributor to the reduction of China’s industrial CO2

emissions. However, our finding was in line with Zhang et al. (2020) and Shao et al. (2016b) who

also found that the mitigation effect of energy intensity was less than the expected.

***INSERT FIG.13 HERE***

5.1.7. Carbon intensity of output effect

Consistent with previous findings (e.g., Zhang et al., 2020), as shown in Fig. 14, carbon

intensity of output exerted a mitigation effect on CO2 emissions in most sub-sectors (except

PSESW, SPFM, PPC, PNGE, and RCMC). Nevertheless, Fig. 14 also shows that carbon intensity

of output of PSESW and SPFM led to an increase of 642.5 Mt and 333.7 Mt in CO2 emissions,

respectively. The huge impact of these two sub-sectors completely offset the emission-reduction

effect of carbon intensity of output of other sub-sectors, resulting in an increase of 413.64 Mt in

total industrial CO2 emissions.

***INSERT FIG.14 HERE***

5.1.8. Carbon intensity of energy effect

Similar to carbon intensity of output, as shown in Fig. 15, carbon intensity of energy played a

positive role in reducing CO2 emissions in most sub-sectors. This indicates that most industrial

sub-sectors are actively implementing the policies related to green and sustainable development

put forward by the Chinese government, such as promoting clean and renewable energy transition,

accelerating energy-related technological progress, and updating cleaner equipment. However, it

should be noted that, there are nearly 30% of sub-sectors whose carbon intensity of energy exerted
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a promoting effect on CO2 emissions. In particular, carbon intensity of energy of PSESW and

NMP contributed to an increase of 1019.84 Mt and 178.02 Mt in CO2 emissions, respectively.

***INSERT FIG.15 HERE***

5.2. Future trends of contributions of key drivers

The impacts of both investment scale and output scale on CO2 emissions will decline, due to

the slowdown of investment and economic growth and the rapid adjustment of the industrial

structure in China. We have already observed this decreasing trend from our decomposition results

in recent years. According to the data from NBSC (Available from https://data.stats.gov.cn),

during 2003-2017, the growth rate of total fixed asset investment decreased continuously from

27.7% to 5.7%, especially in the industrial sector, from 40.0% to 2.1%; The growth rate of

industrial added value decreased continuously from 15.9% to 12.1%; The proportion of industrial

added value in GDP decreased continuously from 45.6% to 39.9%. Following this trend, we

speculate that the contributions of investment scale and output scale to changes in CO2 emissions

will continue to decrease in the future. However, it should be noted that the industrial added value

still maintains high growth, with an average growth rate of 12.9%. Meanwhile, economic growth

remains China’s top priority, especially in the industrial sector. Thus, the industrial output will

maintain a relatively high growth rate in the future. Ultimately, we speculate that the impact of

output scale on CO2 emissions may not decline as much as expected.

The mitigation effect of carbon intensity of investment on CO2 emissions will increase, with

the increase of green investment. "Green development" has been listed by the Chinese government

as an core part of the “14th FYP”. It can be expected that green and high-quality development will

https://data.stats.gov.cn
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be the main theme of China's economy. According to China's Green Finance Development Report

released by the People's Bank of China (PBOC, 2020), by the end of 2019, the balance of green

loans in China reached 10.2 trillion CNY; the scale of international green bonds reached 257.7

billion US dollars (about 1.8 trillion CNY), with an increase of 51.06% over the same period last

year; Moreover, the scale of green bonds issued by China that in line with CBI international

standards was second only to the United States. To this end, we speculate that the carbon intensity

of investment will decrease over time, thereby its role in mitigating CO2 emissions will continue to

increase in the future.

The changes in the impacts of energy intensity and energy consumption on CO2 emissions

may not be clear. Energy-related emissions abatement mainly requires establishing incentive and

constraint mechanisms for both energy saving and energy structural adjustment (Zhao et al., 2016).

As mentioned before, economic growth remains China’s top priority, which means that China still

has a huge rigid demand for energy in the process of rapid industrialization and urbanization.

Moreover, the energy structural adjustment in the industrial sector, including the promotion,

applies, and research and develop of clean and renewable energy, largely depends on the degree of

affordable costs (Zhao et al., 2016). Besides, although low-carbon technological progress,

including production technologies that reduce the process-related carbon intensity and carbon

capture and storage technologies, can curb industrial CO2 emissions to some extent, the associated

difficulties cannot be ignored. For example, on the one hand, the development of these new

technologies or the improvement of existing technologies is confronted with high costs and

technical bottlenecks; on the other hand, the improvement of energy efficiency or the decline of

energy prices brought by technological progress will in turn promote energy consumption, so the
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benefits of technological progress will be offset by rebound effects.

5.3. Sub-sectoral emissions mitigating strategies

Based on the historical contributions of various factors during 2000-2017 and the future

trends of contributions of key drivers discussed above, we recommend that policies intended to

achieve China’s industrial carbon peak target should focus on the following aspects.

 Strategies to mitigate China’s CO2 emissions should be designed at the sub-sector level based

on the industry-specific needs and peculiarities. To date, most provinces in China have

specified the time and pathway to achieve the provincial carbon peak target in the "14th

FYP". Obviously, provincial emissions are composed of emissions from various industries,

especially the industrial sector. Thus, the provincial carbon peak target should be further

decomposed at the economic sector and its sub-sector levels. In view of our decomposition

results show that the emission trajectories and their driving forces of different sub-sectors are

not consistent, policymakers should consider setting a different peak target, peak time, and

mitigation pathway for each sub-sector. For example, in the heavy manufacturing category,

the peak targets of SPFM, NMP, RCMC, and SPNM should be different from the remaining

seven sub-sectors in this category, because these four sub-sectors not only have a huge

volume of emissions but also exhibit sustained trends of increasing emissions. Similarly, in

energy production category, the peak targets of PSESW, CMD, and PPC should be different

from the remaining six sub-sectors in this category.

 Efforts to reduce China’s CO2 emissions should focus more on PSESW, SPFM, NPM, and

RCMC. Nearly half of the sub-sectors (n=17) experienced a negative growth in CO2

emissions, and this downward trend was more obvious after 2010. Moreover, 97.2% of the
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increases in China’s industrial CO2 emissions was mainly due to the outstanding

contributions of four sub-sectors, namely PSESW, SPFM, NPM, and RCMC. Therefore, the

achievement of the industrial carbon peak target or even the national carbon peak target in

China will depend mainly on the degree of green transition of these major sub-sectors related

to energy production and heavy manufacturing.

 Optimizing the investment structure and increasing green investment to strengthen the

emission-reduction effects of investment factors. Investment scale and output scale were

dominant drivers of increases in CO2 emissions, especially investment scales and/or output

scales of PSESW, NMP, SPFM, RCMC, SPNM, and CMD represented relatively large

impacts. However, all countries including China will not sacrifice the economic development

to reduce CO2 emissions. Thus, it is a great challenge for China's industrial sector to balance

CO2 emissions mitigation and economic growth as well as investment (Zhao et al., 2016). In

view of the fact that with the increases of green investment, carbon intensity of investment

played a positive role in mitigating CO2 emissions in all sub-sectors. Thus, if it is not feasible

to reduce investment scale, we recommend that optimizing the investment structure and

increasing green investment may be an alternative to reducing investment scale, which is at

least suitable for the sub-sectors such as PSESW, NMP, SPFM, RCMC, SPNM, and CMD.

Such as, increasing the proportion of investments in low-carbon technology innovation,

including carbon capture and storage technologies and energy-saving equipment upgrading.

 Accelerating the conversion of clean and renewable energy should be the key points of

supply-side reforms in energy-intensive sub-sectors such as SPFM, RCMC, NMP, SPNM,

and PSESW. Energy consumption was an important contributor to increases in CO2
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emissions. Considering the energy demand of above five sub-sectors accounted for 69.7% of

total industrial energy consumption during 2000-2017. Thus, accelerating the conversion of

clean and renewable energy should be the key points of supply-side reforms in these five

sub-sectors. In this regard, in addition to improving the efficiency of existing subside policies

on clean and renewable energy and technologies, accelerating the market-oriented reform of

energy prices, especially electricity prices, is a necessary measure for energy structural

adjustment. Besides, given the fact that the production activities in SPFM, RCMC, and NMP

are still strongly dependent on coal consumption, promoting the clean-utilization of coal in

these three sub-sectors should be another alternative pathway.

 Business-as-usual emission-reduction strategies are appropriate for sub-sectors related to

light manufacturing and high-tech industries. On the one hand, the historical emissions of

these sub-sectors are rather small during the study period, indicating that these is a limited

room for future emission-reduction. On the other hand, all these sub-sectors, except PPP, AFP

and SW, have exhibited a trend of negative growth in CO2 emissions for many years,

indicating the current emission-reduction policies and strategies in these sub-sectors are

effective.

6. Conclusions

In response to the Paris Agreement, China announced that it would aim to reach carbon peak

in 2030. However, the literature has barely discussed strategies to achieve this ambitious target at

the sub-sector level. To fill this research gap, using an extended GDIM model incorporating three

investment factors, and considering 38 industrial sub-sectors, this study investigated the

trajectories of China's industrial CO2 emissions and their driving forces during 2000-2017.
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The decomposition analysis yielded the following findings. Firstly, during the study period,

97.2% of the increases in China’s total industrial CO2 emissions were attributable to four

sub-sectors related to energy production and heavy manufacturing, namely PSESW, SPFM, NPM,

and RCMC. Secondly, different sub-sectors experienced different historical trajectories of CO2

emissions, and the contributions of eight driving factors to CO2 emissions varied across

sub-sectors. Thirdly, investment scale was the most important driver of increases in CO2 emissions

during the study period; its contribution exceeded those of both output scale and energy

consumption. On a positive note, the degree of the contribution of investment scale to CO2

emissions has decreased gradually since the beginning of the 12th FYP. Fourthly, carbon intensity

of investment, energy intensity, and investment efficiency were the main drivers of reductions in

CO2 emissions. Although the mitigating effects of these factors increased over time, the degree of

their contribution remained limited.

In light of the above findings, we suggest that strategies to mitigate China’s CO2 emissions

should be designed at the sub-sector level. Thus, policymakers should consider formulating a

different peak target, peak time, and mitigation pathway for each sub-sector. In this regard, more

efforts should focus on sub-sectors related to energy production and heavy manufacturing, such as

PSESW, SPFM, NMP and RCMC. Compared to reducing investment scales of these sub-sectors,

it is more important to optimize their investment structures through strategies such as increasing

investment in low-carbon technology innovation and energy-saving equipment renovation. In

addition, accelerating the conversion of clean and renewable energy should be the key points of

supply-side reforms in energy-intensive sub-sectors.
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Table 1.

The mean value of indicators in each category during 2000–2017

Indicators

All

sub-sectors

Energy

production

Light

manufacturing

Heavy

manufacturing

High

technology

Mean Mean Mean Mean Mean

CO2 emissions (Mt.) 152.89 343.65 14.56 247.99 4.54

Quantitative indicators

Output scale (Billion CNY) 142.44 94.61 97.02 239.36 179.15

Investment scale (Billion CNY) 98.29 87.46 62.2 162.54 89.04

Energy consumption (Mtce) 33.31 20.12 10.63 91.12 5.49

Relative indicators

Carbon intensity of output (Mt./Billion CNY) 1.26 4.10 0.15 0.85 0.06

Carbon intensity of investment (Mt./Billion CNY) 3.40 6.42 0.68 2.83 1.21

Carbon intensity of energy (Mt./Mtce) 2.55 9.27 1.52 1.92 0.29

Energy intensity (Mtce/Billion CNY) 0.56 1.75 0.11 0.33 0.07

Investment efficiency (CNY/CNY) 3.81 2.07 5.06 3.78 4.47
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Fig.1. Trends of China’s industrial structure adjustment, economic growth and total fixed asset
investment (Panel A), Energy consumption structure in China (Panel B), and Three major energy
consumption in China’s industrial sector (Panel C). The original data of Panel A and Panel B were
obtained from the website of NBSC (Available from https://data.stats.gov.cn). The original data of
Panel C were obtained from the China Energy Statistical Yearbook (NBSC, 2001–2018)

https://data.stats.gov.cn
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Fig.2. Yearly changes of total CO2 emissions and factors' contributions during 2000–2017. The
details are presented in Table A2 in the Appendix A.
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1
Fig.3. Cumulative contributions of major sub-sectors and driving factors to changes in total CO2 emissions during the 2000–2017 period.2
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Fig.4. Energy production category: Contributions of eight factors to changes in CO2 emissions
during the 2000–2017 period. The baseline year is 2000. This category includes 9 sub-sectors: (1)
Coal Mining and Dressing (CMD), (2) Petroleum and Natural Gas Extraction (PNGE), (3) Ferrous
Metals Mining and Dressing (FMMD), (4) Nonferrous Metals Mining and Dressing (NMMD), (5)
Non-metal Minerals Mining and Dressing (NMD), (6) Petroleum Processing and Coking (PPC),
(7)Production and Supply of Electric Power, Steam and Hot Water (PSESW), (8) Production and
Supply of Gas (PSG), and (9) Other Minerals Mining and Dressing (OMMD).
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Fig.5. Heavy manufacturing category: Contributions of eight factors to CO2 emission changes
during the 2000–2017 period. The baseline year is 2000. This category includes 11 sub-sectors: (1)
Raw Chemical Materials and Chemical Products (RCMC), (2) Chemical Fiber (CF), (3) Rubber &
Plastic Products (RPP), (4) Nonmetal Mineral Products (NMP), (5) Smelting and Pressing of
Ferrous Metals (SPFM), (6) Smelting and Pressing of Nonferrous Metals (SPNM), (7) Metal
Products (MP), (8) Ordinary Machinery (OM), (9) Equipment for Special Purposes (ESP), (10)
Transportation Equipment (TE), and (11) Production and Supply of Tap Water (PSW).
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Fig.6. Light manufacturing category: Contributions of eight factors to changes in CO2 emissions
during the 2000–2017 period. The baseline year is 2000. This category includes 13 sub-sectors: (1)
Agri-Food Processing (AFP), (2) Food Production (FP), (3) Beverage Production (BP), (4)
Tobacco Processing (TP), (5) Textile Industry (TI), (6) Garments and Other Fiber Products
(GOFP), (7) Leather, Furs, Down and Related Products (LFDP), (8) Timber Processing, Bamboo,
Cane, Palm Fiber & Straw Products (TPBC), (9) Furniture Manufacturing (FM), (10)
Papermaking and Paper Products (PPP), (11) Printing and Record Medium Reproduction (PRMR),
(12) Cultural, Educational and Sports Articles (CESA), and (13) Medical and Pharmaceutical
Products (MPP).
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Fig.7. High-tech category: Contributions of eight factors to changes in CO2 emissions during the
2000–2017 period. The baseline year is 2000. This category includes 5 sub-sectors: (1) Electric
Equipment and Machinery (EEM), (2) Electronic and Telecommunications Equipment (ETE), (3)
Instruments, Meters, Cultural and Office Machinery (IMCM), (4) Other Manufacturing (OMs),
and (5) Scrap and Waste (SW).
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Fig.8. Investment scale effect
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Fig.9. Output scale effect
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Fig.10. Energy consumption effect
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Fig.11. Carbon intensity of investment effect
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Fig.12. Carbon intensity of output effect
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Fig.13. Carbon intensity of energy effect
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Fig.14. Energy intensity effect
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Fig.15. Investment efficiency effect
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